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Note

On the Use of a Variable-Step Method for the
Computation of Diatomic Eigenvalues near
Dissociation: The Lennard—Jones Potential

in a recent paper [1], Tellinghuisen mentioned some difficulties in the compu-
tation of the eigenvalues for the Lennard-Jones potential near dissociation {for
v=122 and v =23). The same difficulties were already mentioned by Hutson [27.

In these two works, the method used to compute the eigenvalues, was the wideiy
used shooting method described by Cooley [3]. The details of the numerical
treatment can be found in Ref. [1].

Another scheme, the canonical functions approach, was already presented {41 and
applied with equal ease for low and high levels. Examples of the accuracy of ths
results were given for the eigenvalues of a Morse potential function up to the
dissociation [57]. The aim of this note is to explain the causes of the difficuities
mentioned above, and to show ways to overcome them.

In a recent paper [6] we applied the canonicai functions method to the model
Lennard-Jones potential already used by Hutson [2] and by Tellinghuisen {17
(U(r)=D(1 —r~%)? with D= 10000 cm ~"'). We found that the range of integration
for the highest level (v =23) is quite large: it is limited by r,, =08 and r,, =73
This fact was already predicted by Hutson [27] who took L =0.65 and =6
for the computation of the eigenvalues up to v =20. It is clear that the total range
of integration Ar =r,, — Fmin 1S to be multiplied by a factor of 12 in order to treat
the highest level. We believe that this is the main cause of the difficulty mentioned
above.

The difference equation commonly used in the shooting method is that of
Numerov [77. In the canonical functions method, one may use any difference equa-
tion [87]. For both methods, the use of the difference equation with a constant step-
size 15 quite expensive in “computer time” for the two highest levels. In the shosting
method the estimated CPU time for v =23 is roughly 12 x 7,,, where 1, is the CFU
for v=20 (we assume here that r is proportional to Ar, the total range of
integration}. This remark stands true for the canonical functions method.

For this reason, we tried the recent variable-step difference equation [97]. We give
inn Table I the computed cigenvalues E, for several values of v, along with the
corresponding values of r;, and r,,,, effectively used (see below). According tc the
present method [97, the total number [ of the used steps varies from one level 1o
the other. The values of I for the considered levels are given in the last column.

The results of Table I show that the cconomy in CPU time is impressive. The
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TABLE I

Vibrational Eigenvalues of the Lennard—Jones Potential Computed for Several Levels v by the
Canonical Functions Method [4], with the Variable-Step Difference Equation [9]

v Eem™) Fain (A) Fas (A) I“
0 589.536 80 0.842 887 69 1.264 4557 25
4 4521.4757 0.885 029 93 1.430 8850 34
8 7205.266 1 0.816 214 52 1.683 869 7 42
12 8847.741 1 0.814 449 68 2029 649 3 50
16 9681.866 9 0.810 403 03 2.7559230 60
20 9969.528 6 0.810 104 48 50372443 70
21 9989.472 5 0.810 078 64 6910158 0 74
22 9998.016 6 0.810 067 36 12.358 140 80
23 9999.973 0 0.810 064 76 73.389 788 94

Note. The highest level is bounded by 2.7 x 10 ~° of the well depth. For each v, the inner and the outer
numerical limits r;, and r,, are given in angstroms. The last column is reserved for the total number
of steps used for each level.

2 Total number of steps used in the canonical functions scheme [4], between r, (bottom of the well)
and rg,,, then between r, and r,.

number of steps given in column 5 shows that this time increases from ¢, (for v =0)
to approximately 3¢, (for v =20), and to 4¢, (for v =23); in other terms ,; = 1.31.
We deduce from this application that the canonical functions method used with the
variable-step difference equation (as presented in Ref. [9]) is highly efficient. We
underline that its formulation and the progamming are quite simple; it does not
require any sophisticated algorithm nor sophisticated equipment (the present
application is done on the personal computer NewBrain AD in eight significant
figures).

We finally give an example (for r=12) of the determination of r,,, (Or 7. ,)
within the canonical functions scheme. We give in Table II for each step i (each
line): (i) the computed variable step-size A, (starting at the potential minimum
ro=1 A); (ii) the corresponding value of r (r=r,+h, + ---); (iii) the computed
ratio —a(r)/B(r) where o« and f are the two “canonical functions” (starting with
a(r,)=1, f(r,)=0); (iv) the computed ratio —a'(r)/f'(r) (starting with a'(r,) =0,
B'(r)=1).

According to the canonical functions method [4], the ‘computation is stopped
when the wavefunction ,, and its derivative ., approach zero for large r,
ie., Yo(r)=y (r)alr)+ ¥ (r) B(r) >, .0 and  Yi(r)=y,(r.)oa'(r) +
v.(r,) B'(r)—,_ . 0. This boundary condition is numerically fulfilled for a value
Fmax, Solution of the equation lim, ,  o/f=Ilim o'/f’. The example given in
Table II shows how this value r,,, may be obtained, simply, within any desired
precision, and without any prior assumption. The second part of Table II, (r<r,),
shows that this work is simply repeated for r<r, to get r;,. (Note that the whole
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TABLE I

Variation of the Ratios —a(ryf(r) and —a'(r)/f(r) for v=12 (E,=0.884774 1ld¢m*; of
the Lennard-Jones Potential

Step order Step-size

i h, r —u/f —o g

1 0.017 1.017 41889024 —128%.747

2 0.022 1.039 —172.43647 50.68763

3 0.018 1.057 65.03711 —138 73419

4 0.018 1.075 —121.4826 71.552562

S 0.020 1.096 97.714292 —92.818763

6 0.020 1.116 —78.710239 109.73684

7 0.020 1.136 120.75873 ~ 7559964

g 0.025 1.161 —31.625443 271.0661

9 0.022 1.184 297.79113 ~— 31605093
10 0.023 1.207 —~31.521883 263.26341
i 0.025 1.232 338.55383 —18.393{38
12 0.025 1.257 —34.961412 23558772
13 0.027 1.285 215.6742 —44.1928356

0.028 1.313 —57.458582 144.07227

5 0.029 1.343 102.49476 —92.976411
16 0.033 1.376 —123.17252 05.752258
17 0.033 1.409 31.714676 —338.3342
i8 0.037 1.447 5574.0046 —8.2393134
19 0.038 1.485 —54.056361 131.56203
20 0.041 1.526 41.399893 —365.13348
Zi 0.045 1.571 23569303 —80.067024
22 0.047 1.619 —671.94254 —67.451731
23 0.060 1.679 —206.1905 —1537.72649
24 0.055 1.734 —176.163&4 —~167.71689
25 0.052 1.786 —172.59348 —~171.76522
26 0.048 1.834 ~172.23502 —172.15535
27 0.044 1.879 —172.20017 ~172.19221%
28 0.041 1.920 —172.19665 —172.19534
26 0.039 1.959 —172.19632 --172 19622
30 0.03¢6 1.995 —172.19627 ~ 17219626
38 0.034 2.029 —172.19627 —i72.19627
32 0.032 2.062 —172.19627 —172.19827
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TABLE 1I—Continued

Step order Step-size
i h; r —a/B —a'/f
r<r,
1 —0.017 0.983 —4.1729251 2347.3937
2 —0.017 0.966 2509.818 —24736377
3 —~0.018 0.948 —6.8358459 19349313
4 —0.017 0931 —1102.1259 12918141
5 —0.016 0914 47.405603 —141.33843
6 —0.016 0.899 —40.451228 2403.6849
7 —0.014 0.885 —110.22484 —593.64861
8 —0.012 0.873 —155.36869 —202.23166
9 —0.010 0.863 —169.31696 —175.90632
10 —0.009 0.855 —171.79845 —172.66126
11 —0.008 0.847 —172.14518 —172.25368
12 —0.007 0.840 ~172.18978 —~172.20341
13 —0.006 0.834 —172.19543 —172.19718
14 —0.005 0.828 —172.19616 —172.19639
15 —0.004 0.823 —172.19625 —172.19629
16 —0.003 0.819 —172.19627 —172.19627
17 —0.002 0.814 —172.19627 —172.19627
18 —0.001 0.811 —172.19627 ~172.19627
Note. For r >r,, the computation is stopped (and r,, is deduced) when —a/f= —a'/p’. The second

part of the table (r<r,) gives r,.

method looks to determine the eigenvalue E, by imposing the continuity of , and
¥, at r,, i.e., by imposing the equality: lim,_  —a(r)/f(r)=1lim,_ ,— a(r)/B(r)).
Other details of the numerical application to the present method may be found
elsewhere [9].
We conclude that the “canonical functions variable-step” method is an efficient
tool for the diatomic eigenvalue problem near dissociation. It allows the compu-
tation of high and low eigenvalues with equal ease.
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