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Note 

On the Use of a Variable-Step Method f 
omputation of Diatomic Eige~v~lue~ near 
issociation: The Lennard-Jones P 

In a recent paper [I], Tellinghuisen mentioned some difficulties in the compu- 
tation of the eigenvalues for the Lennard-Jones potential near dissociation {for 
I’ = 22 and r = 23). The same difficulties were already mentioned by Hutson [Z]. 

In these two works. the method used to compute the eigenvalues, was the wideiy 
used shooting method described by Cooley [3]. The details of the numerical 
treatment can be found in Ref. [ 11. 

Another scheme, the canonicalfunctions approach. was already presented [4] and 
applied with equal ease for low and high levels. Examples of the accuracy of the 
results were given for the eigenvalues of a Morse potential function up to the 
dissociation [5]. The aim of this note is to explain the causes of the difficulties 
mentioned above, and to show ways to overcome them. 

In a recent paper [6] we applied the canonical functions method to t 
Lennard-Jones potential already used by Hutson [Z] and by Tellinghuisen 113 
( G(I’) = D( I -f-6)2 with D = 10000 cm ~ r). We found that the range of integration 
for the highest level (Y = 23) is quite large: it is limited by ymir. = 9.8 and rrnnx = 73 A. 
This fact was already predicted by Hutson [Z] who took !.Ein = 0.65 and r&, = 6 a 
for the computation of the eigenvalues up to L’ = 20. It is clear that the total range 
of integration Ar = rmax - Y,~,, is to be multiplied by a factor of 12 in crder to treat 
the highest level. We believe that this is the main cause of the difftculty mentioned 
above. 

The difference equation commonly used in the shooting method is that OS 
Numerov CT]. In the canonical functions method, one may use any difference equa- 
tion [8]. For both methods, the use of the difference equation with a constant step- 
size is quite expensive in “computer time” for the two highest levels. In the shooting 
method the estimated CPU time for L’ = 23 is roughly 12 x i,,. where frc is the CPU 
for L’ = 20 (we assume here that t is proportional to AT, the total range ai 
integration). This remark stands true for the canonicai functions method. 

For this reason, we tried the recent variable-step difference equation [9]. We give 
in Table I the computed eigenvalues E,, for several values of c; along wi;h the 
corresponding values of I’,~~ and rrnax effectively used (see below). According to the 
present method [9], the total number I of the used steps varies from one level to 
the other. The values of I for the considered levels are given in the last column 

The results of Table I show that the economy in CPU time is impressive. The 
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TABLE I 

Vibrational Eigenvalues of the Lennard-Jones Potential Computed for Several Levels t’ by the 
Canonical Functions Method [4], with the Variable-Step Difference Equation [9] 

0 

8 
12 
16 
20 
21 
22 
23 

E(cm-‘j 

589.536 80 0.842 887 69 1.264 455 I 25 
4521.475 7 0.885 029 93 1.430 885 0 34 
7205.266 1 0.816 214 52 1.683 869 7 32 
8847.741 1 0.8 14 449 68 2.029 649 3 50 
9681.866 9 0.810 403 03 2.755 923 0 60 
9969.528 6 0.810 104 48 5.037 244 3 70 
9989.412 5 0.810 078 64 6.910 158 0 74 
9998.016 6 0.810 067 36 12.358 140 80 
9999.973 0 0.810 064 76 73.389 788 94 

rmin ta) rma., (A) I” 

Nore. The highest level is bounded by 2.7 x lo-” of the well depth. For each 11, the inner and the outer 
numerical limits rmin and rmar are given in angstroms. The last column is reserved for the total number 
of steps used for each level. 

a Total number of steps used in the canonical functions scheme [4], between rp (bottom of the well) 
and rrnak, then between r,, and rmln. 

number of steps given in column 5 shows that this time increases from t, (for v = 0) 
to approximately 3t, (for tr = 20), and to 4t, (for v = 23); in other terms t,, = l._?t,,. 
We deduce from this application that the canonical functions method used with the 
variable-step difference equation (as presented in Ref. [9]) is highly efficient. We 
underline that its formulation and the progamming are quite simple; it does not 
require any sophisticated algorithm nor sophisticated equipment (the present 
application is done on the personal computer NewBrain AD in eight significant 
figures). 

We finally give an example (for c= 12) of the determination of rmax (or Y,in) 
within the canonical functions scheme. We give in Table II for each step i (each 
line): (i) the computed variable step-size hi (starting at the potential minimum 
rz = 1 A); (ii) the corresponding value of Y (I’ = I’, + k, + . . j; (iii) the computed 
ratio -a(r)//?(r) where CI and /3 are the two “canonical functions” (starting with 
a(r,) = 1, p(le) = 0); (iv) the computed ratio -~‘(r)/lJ’(v) (starting with a’(r,) = 0, 
B’(r,) = 1). 

According to the canonical functions method [4], the ‘computation is stopped 
when the wavefunction $,, and its derivative $i., approach zero for large r, 
i.e., tiI.(r) = II/Are) 4r) + $IXr,) B(r) jr+ m 0 and $Xr) = ti,ir,) u’(r) + 
Wr,) P’(r) +r4 r 0. This boundary condition is numerically fulfilled for a value 
r max 3 solution of the equation lim,, ~ a//j = lim,, ~ at/p’. The example given in 
Table II shows how this value r,,, may be obtained, simply, within any desired 
precision, and without any prior assumption. The second part of Table II, (r < re)? 
shows that this work is simply repeated for r < I’, to get rmin. (Note that the whole 
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TABLE II 

Variatioc of the Ratios -cz/~)ij(r) and -cr’(rj/p’fr) fcr c = 12 (E,. = 0.884974 !I4 mm! I 31 
the Lennard-Jones Potential 

Step order Step-size 
i h, 

0.017 1.019 1. I 889024 -2289.949 
0.021 1.039 - 172.63647 50.68793 
0.018 1.057 65.03911 - 138 73Lj-19 

4 0.018 1.075 - 121.4826 71.552592 
5 0.020 1.096 97.714292 mm92.818763 
6 0.020 1.116 - 98.710239 109.78684 

0.020 1.136 120.75873 -75 59964 
0.025 1.161 -31.025443 271.0661 
0.022 1.184 297.79:‘13 - 3 1.6C5C~93 

10 0.023 I.207 -3l.i?1863 I- 263.26341 
11 0.025 1.232 338.35383 - 28.393 !I58 
12 0.025 1.257 -34.961412 135.98772 

13 0.027 1.285 215.6543 --44.ISi856 
14 0.028 i.313 -57.458583. 144.07227 
15 0.029 1.343 102.49476 -92.976411 

16 0.033 1.376 -1’3.17252 65.752258 
19 0.033 1.409 31.114676 - 338.3542 
i8 0.037 1.447 5594.OC46 -8.2393!3& 

19 0.038 1.485 - 54.056361 131.56203 
20 0.041 1.526 4L.399893 -. 365.13348 
2i 0.045 1.571 235.69303 ~ 80.067014 

22 
23 
24 

0.047 1.619 -671.94254 -67.45173: 
0.060 1.679 - 206.1905 - 157.7?.%9~ 
0.055 1.734 - 176.16384 - lC7.71659 

25 0.052 1.786 - 172 59348 - 171.7652’ 
26 0.048 1.834 - 172.23502 - 172.15535 
17 0.044 1.879 - 192.20017 - 172.!9221 

28 0.04 1 1.320 - i72.39669 
29 0.039 1.959 - 172.19632 
30 0.036 1.995 ~ 172.19629 

31 
32 

0.034 
0.032 

2.029 - 172.19627 
2.062 - 172.19627 

- 172.14627 
~- 172.19627 
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TABLE II--Contimed 

Step order 
i 

Y < r, 

Step-size 

hi 

1 -0.017 0.983 -4.1729251 2347.3937 
2 -0.017 0.966 2509.818 - 2.4736377 
3 -0.018 0.948 -6.8358459 1934.9313 

4 -0.017 0.931 -1102.1259 12.918141 
5 -0.016 0.914 47.405603 - 141.33843 
6 -0.016 0.899 -40.451228 2403.6849 

7 -0.014 0.885 - 110.22484 - 593.64861 
8 -0.012 0.873 - 155.36869 -202.23166 
9 -0.010 0.863 - 169.31696 - 175.90632 

10 -0.009 0.855 -171.79845 - 172.66126 
11 - 0.008 0.847 - 172.14518 - 172.25368 
12 -0.007 0.840 - 172.18978 - 172.20341 

13 - 0.006 0.834 - 172.19543 -172.19718 
14 -0.005 0.828 - 172.19616 - 172.19639 
15 - 0.004 0.823 - 172.19625 - 172.19629 

16 - 0.003 0.819 - 172.19627 - 172.19627 
17 - 0.002 0.814 - 172.19627 - 172.19627 
18 -0.001 0.811 - 172.19627 - 172.19627 

Note. For r > rer the computation is stopped (and rmaL is deduced) when -a/p = - x’/p’. The second 
part of the table (7 <r,) gives rmin. 

method looks to determine the eigenvalue E, by imposing the continuity of $, and 
$: at Y,, i.e., by imposing the equality: lim,, a - ~(r)/P(r) = lim,-, - a(r)/p(r)). 

Other details of the numerical application to the present method may be found 
elsewhere [9]. 

We conclude that the “canonical functions variable-step” method is an efficient 
tool for the diatomic eigenvalue problem near dissociation. It allows the compu- 
tation of high and low eigenvalues with equal ease. 
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