Note

On the Use of a Variable-Step Method for the Computation of Diatomic Eigenvalues near Dissociation: The Lennard–Jones Potential

In a recent paper [1], Tellinghuisen mentioned some difficulties in the computation of the eigenvalues for the Lennard–Jones potential near dissociation (for v = 22 and v = 23). The same difficulties were already mentioned by Hutson [2].

In these two works, the method used to compute the eigenvalues, was the widely used *shooting* method described by Cooley [3]. The details of the numerical treatment can be found in Ref. [1].

Another scheme, the *canonical functions approach*, was already presented [4] and applied with equal ease for low and high levels. Examples of the accuracy of the results were given for the eigenvalues of a Morse potential function up to the dissociation [5]. The aim of this note is to explain the causes of the difficulties mentioned above, and to show ways to overcome them.

In a recent paper [6] we applied the canonical functions method to the model Lennard-Jones potential already used by Hutson [2] and by Tellinghuisen [1] $(U(r) = D(1 - r^{-6})^2$ with D = 10000 cm⁻¹). We found that the range of integration for the highest level (v = 23) is quite large: it is limited by $r_{\min} = 0.8$ and $r_{\max} = 73$ Å. This fact was already predicted by Hutson [2] who took $r_{\min}^H = 0.65$ and $r_{\max}^H = 6$ Å for the computation of the eigenvalues up to v = 20. It is clear that the total range of integration $\Delta r = r_{\max} - r_{\min}$ is to be multiplied by a factor of 12 in order to treat the highest level. We believe that this is the main cause of the difficulty mentioned above.

The difference equation commonly used in the shooting method is that of Numerov [7]. In the canonical functions method, one may use any difference equation [8]. For both methods, the use of the difference equation with a constant stepsize is quite expensive in "computer time" for the two highest levels. In the shooting method the estimated CPU time for v = 23 is roughly $12 \times t_{20}$, where t_{20} is the CPU for v = 20 (we assume here that t is proportional to Δr , the total range of integration). This remark stands true for the canonical functions method.

For this reason, we tried the recent variable-step difference equation [9]. We give in Table I the computed eigenvalues E_v for several values of v, along with the corresponding values of r_{\min} and r_{\max} effectively used (see below). According to the present method [9], the total number I of the used steps varies from one level to the other. The values of I for the considered levels are given in the last column.

The results of Table I show that the economy in CPU time is impressive. The

TABLE I

v	$E(cm^{-1})$	r_{\min} (Å)	r_{\max} (Å)	I^a
0	589.536 80	0.842 887 69	1.264 455 7	25
4	4521.475 7	0.885 029 93	1.430 885 0	34
8	7205.266 1	0.816 214 52	1.683 869 7	42
12	8847.741 1	0.814 449 68	2.029 649 3	50
16	9681.866 9	0.810 403 03	2.755 923 0	60
20	9969.528 6	0.810 104 48	5.037 244 3	70
21	9989.472 5	0.810 078 64	6.910 158 0	74
22	9998.016 6	0.810 067 36	12.358 140	80
23	9999.973 0	0.810 064 76	73.389 788	94

Vibrational Eigenvalues of the Lennard-Jones Potential Computed for Several Levels v by the Canonical Functions Method [4], with the Variable-Step Difference Equation [9]

Note. The highest level is bounded by 2.7×10^{-6} of the well depth. For each v, the inner and the outer numerical limits r_{\min} and r_{\max} are given in angstroms. The last column is reserved for the total number of steps used for each level.

^a Total number of steps used in the canonical functions scheme [4], between r_e (bottom of the well) and r_{\max} , then between r_e and r_{\min} .

number of steps given in column 5 shows that this time increases from t_0 (for v = 0) to approximately $3t_0$ (for v = 20), and to $4t_0$ (for v = 23); in other terms $t_{23} = 1.3t_{20}$. We deduce from this application that the canonical functions method used with the variable-step difference equation (as presented in Ref. [9]) is highly efficient. We underline that its formulation and the progamming are quite simple; it does not require any sophisticated algorithm nor sophisticated equipment (the present application is done on the personal computer NewBrain AD in eight significant figures).

We finally give an example (for v = 12) of the determination of r_{max} (or r_{min}) within the canonical functions scheme. We give in Table II for each step *i* (each line): (i) the computed variable step-size h_i (starting at the potential minimum $r_e = 1$ Å); (ii) the corresponding value of r ($r = r_e + h_1 + \cdots$); (iii) the computed ratio $-\alpha(r)/\beta(r)$ where α and β are the two "canonical functions" (starting with $\alpha(r_e) = 1$, $\beta(r_e) = 0$); (iv) the computed ratio $-\alpha'(r)/\beta'(r)$ (starting with $\alpha'(r_e) = 0$, $\beta'(r_e) = 1$).

According to the canonical functions method [4], the computation is stopped when the wavefunction ψ_v , and its derivative ψ'_v , approach zero for large r, i.e., $\psi_v(r) = \psi_v(r_e) \alpha(r) + \psi'_v(r_e) \beta(r) \rightarrow_{r \to \infty} 0$ and $\psi'_v(r) = \psi_v(r_e) \alpha'(r) + \psi'_v(r_e) \beta'(r) \rightarrow_{r \to \infty} 0$. This boundary condition is numerically fulfilled for a value r_{\max} , solution of the equation $\lim_{r \to \infty} \alpha/\beta = \lim_{r \to \infty} \alpha'/\beta'$. The example given in Table II shows how this value r_{\max} may be obtained, simply, within any desired precision, and without any prior assumption. The second part of Table II, $(r < r_e)$, shows that this work is simply repeated for $r < r_e$ to get r_{\min} . (Note that the whole

Variation of the Ratios $-\alpha(r)/\beta(r)$ and $-\alpha'(r)/\beta'(r)$ for $v = 12$ ($E_c = 0.884774$ 114 cm ⁻¹) of the Lennard-Jones Potential						
Step order	Step-size		-			
i	h_{i}	r	$-\alpha/\beta$	$-\alpha''\beta'$		
> r _. .						
1	0.017	1.017	4.1889024	-2289.747		
2	0.022	1.039	-172.43647	50.68793		
3	0.018	1.057	65.03711	-13873419		
4	0.018	1.075	- 121.4826	71.552592		
5	0.020	1.096	97.714292	-92.818763		
6	0.020	1.116	-78.710239	109.78684		
7	0.020	1.136	120.75873	- 75 59964		
8	0.025	1.161	-31.025443	271.0661		
9	0.022	1.184	297.79113	- 31.605093		
10	0.023	1.207	- 31.621863	263.26341		
11	0.025	1.232	338.55383	- 28.393158		
12	0.025	1.257	- 34.961412	235.98772		
13	0.027	1 285	215 6743	-44 197856		
14	0.027	1 313	57 458582	144 07227		
15	0.029	1.343	102.49476	-92.976411		
16	0.033	1 376	-123 17252	65 752258		
17	0.033	1.409	31.714676	- 338.3542		
18	0.037	1.447	5574.0046	- 8.2393134		
19	0.038	1.485	- 54 056361	131.56203		
20	0.041	1.526	41,399893	- 365.13348		
21	0.045	1.571	235.69303	- 80.067024		
22	0.047	1 619	-671.94254	-67451731		
23	0.060	1.679	- 206.1905	-137.72649		
24	0.055	1.734	-176.16384	-167.71689		
25	0.052	1 786	- 172 59348	- 171 76522		
25	0.052	1 834	-172 23502	-172 15535		
27	0.044	1.879	-172.20017	- 172.19221		
• 6						
28	0.041	1.920	-172.19669	-172.19584		
29	0.039	1.959	-172.19632	- 172 19622		
30	0.036	1.995	-172.19627	- 172.19626		
31	0.034	2.029	-172.19627	-172.19627		
32	0.032	2.062	-172.19627	-172.19627		

TABLE II

Step order	Step-size			
i	h _i	r	$-\alpha/\beta$	$-\alpha'/\beta'$
<i>r</i> < <i>r</i> _e				
1	-0.017	0.983	- 4.1729251	2347.3937
2	-0.017	0.966	2509.818	-2.4736377
3	-0.018	0.948	-6.8358459	1934.9313
4	-0.017	0.931	-1102.1259	12.918141
5	-0.016	0.914	47.405603	-141.33843
6	-0.016	0.899	-40.451228	2403.6849
7	0.014	0.885	- 110.22484	- 593.64861
8	-0.012	0.873	-155.36869	-202.23166
9	-0.010	0.863	-169.31696	-175.90632
10	-0.009	0.855	- 171.79845	-172.66126
11	-0.008	0.847	-172.14518	-172.25368
12	-0.007	0.840	- 172.18978	-172.20341
13	-0.006	0.834	- 172.19543	-172.19718
14	-0.005	0.828	-172.19616	-172.19639
15	-0.004	0.823	- 172.19625	- 172.19629
16	-0.003	0.819	- 172.19627	-172.19627
17	-0.002	0.814	- 172,19627	-172.19627
18	-0.001	0.811	-172.19627	172.19627

TABLE II—Continued

Note. For $r > r_e$, the computation is stopped (and r_{\max} is deduced) when $-\alpha/\beta = -\alpha'/\beta'$. The second part of the table $(r < r_e)$ gives r_{\min} .

method looks to determine the eigenvalue E_v by imposing the continuity of ψ_v and ψ'_v at r_e , i.e., by imposing the equality: $\lim_{r \to \infty} -\alpha(r)/\beta(r) = \lim_{r \to 0} -\alpha(r)/\beta(r)$.

Other details of the numerical application to the present method may be found elsewhere [9].

We conclude that the "canonical functions variable-step" method is an efficient tool for the diatomic eigenvalue problem near dissociation. It allows the computation of high and low eigenvalues with equal ease.

References

1. J. TELLINGHUISEN, J. Mol. Spectrosc. 122, 455 (1987).

3. J. W. COOLEY, Math. Comput. 15, 363 (1961).

^{2.} J. M. HUTSON, J. Phys. B 14, 851 (1981).

- 4. H. KOBEISSI, J. Phys. B 15, 693 (1982).
- 5. M. DAGHER AND H. KOBEISSI, J. Comput. Chem. 5, 576 (1984).
- 6. M. DAGHER AND H. KOBEISSI, J. Comput. Chem. 9, 647 (1988).
- 7. B. NUMEROV, Publ. Obs. Astrophys. Central. Russ. 2, 188 (1933).
- 8. H. KOBEISSI, M. DAGHER, M. KOREK, AND A. CHAALAN, J. Comput. Chem. 4. 218 (1983).
- 9. H. KOBEISSI AND M. KOBEISSI, J. Comput. Phys. 77, 501 (1988).

RECEIVED: October 27, 1987; REVISED: August 19, 1988

HAFEZ KOBEISSI MAJIDA KOBEISSI MOUNZER DAGHER

Faculty of Science, Lebanese University and the Group of Molecular and Atomic Physics at the National Research Council P.O. Box 13-5224 Beirut, Lebanon